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Meromorphic Airfferentials on a modular curve
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D"V'I'SOQ on Rl'BWIMm surfaces

:De:,cfm ition; dot X be a Remann Surface.
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Divisor of a Meromor,b}n'c Function
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SHivisgor of a meromor phic  dif ferential
@é/ii (w0 fe a meromorphic oﬂfferemﬁa/g of c/?@e%
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Divisor of a meromorphic Afferential
%egﬁum/hon, lt w fo a meromorphic.  differential

0@7((»} = ZX OW/T(W) 2
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4
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Coro&fwrj: At X be a éam/maz‘ @m@m Surfan 0 genus 4.
Lot (7)) be a  canonical divisor on X
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Desfinition ; H diffecentbal W of a/%ree n on a
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Suppse that 10 €52 (X(TY),
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Let coc X(F) fe  cusp of width 4.
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