

Meromorphic differentials,

Riemann - Roch theorem

and

Dimensions of the spaces of modular
forms.

Projective line

- As a set:

$$\mathbb{P}^1(\mathbb{C}) := \mathbb{C} \sqcup \{\infty\}$$

- As topological space:

For $R > 0$ $\mathcal{U}_R := \{z \in \mathbb{C} \mid |z| > R\}$

\mathcal{U}_R is a neighbourhood of ∞ at $\mathbb{P}^1(\mathbb{C})$

- As a Riemann surface:

We define two holomorphic charts

$$\Omega_1 := \mathbb{C} \quad \varphi_1: \Omega_1 \rightarrow \mathbb{C} \quad z \mapsto z \quad \begin{cases} 0, & \text{if } z = \infty \end{cases}$$

$$\Omega_2 := \{\infty\} \cup \mathbb{C} \setminus \{0\} \quad \varphi_2: \Omega_2 \rightarrow \mathbb{C} \quad z \mapsto \begin{cases} \frac{1}{z}, & \text{if } z \in \mathbb{C} \setminus \{0\} \end{cases}$$

Transition map: $\mathbb{C} \setminus \{0\} \xrightarrow{\varphi_1^{-1}} \Omega_1 \cap \Omega_2 \xrightarrow{\varphi_2} \mathbb{C} \setminus \{0\} \quad \varphi_2 \circ \varphi_1^{-1}(z) = \frac{1}{z}$

Meromorphic functions

Definition: Let X be a Riemann surface.

A meromorphic function on X is a holomorphic function from X to $\mathbb{P}^1(\mathbb{C})$.

Notation: The set of meromorphic functions on X is denoted by $\mathcal{C}(X)$.

Proposition: $\mathcal{C}(X)$ is a field with respect to pointwise addition and multiplication.

Example: Meromorphic functions on modular curves.

Let Γ be a congruence subgroup of $SL_2(\mathbb{Z}) =: \Gamma_1$.

Let $f: \mathbb{H} \rightarrow \mathbb{C}$ be a meromorphic function.

Suppose that:

- $f\left(\frac{az+b}{cz+d}\right) = f(z)$ for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ and $z \in \mathbb{H}$.
- Around each cusp $\alpha = \frac{a_1\infty + b_1}{c_1\infty + d_1}$, $\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \in \Gamma_1$, f has the Laurent expansion:

$$f\left(\frac{a_1z+b_1}{c_1z+d_1}\right) = \sum_{n=n_0}^{\infty} c_{f,\alpha}(n) e^{\frac{2\pi i}{h_\alpha} \cdot n z}$$

for some $h_\alpha \in \mathbb{N}_{>0}$ and $n_0 \in \mathbb{Z}$

Then f defines a meromorphic function on $X(\Gamma)$.

Example: $\mathbb{C}(X_1)$

The elliptic j -invariant is defined as

$$j(z) := \frac{1728 E_4(z)^3}{E_4^3(z) - E_6^2(z)}, \quad z \in \mathbb{H}$$

Expansion around the ∞ :

$$j(z) = e^{-2\pi i z} + 744 + 196884 e^{2\pi i z} + 21493760 e^{4\pi i z} + \dots$$

$j: X_1 \rightarrow \mathbb{P}^1(\mathbb{C})$ is a meromorphic function.

Exercise:

- $j: X_1 \rightarrow \mathbb{P}^1(\mathbb{C})$ is a biholomorphic map
- $\mathbb{C}(X_1) = \mathbb{C}(j)$ (any meromorphic function on X_1 is a rational function of j)

Non-zero weight.

Let $k \in \mathbb{Z} \setminus \{0\}$, Γ be a congruence subgroup.

Suppose that $f : \mathbb{H} \rightarrow \mathbb{P}^1(\mathbb{C})$ is a meromorphic function and

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z) \quad \text{for all}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma, \quad z \in \mathbb{H}.$$

Then f is not well-defined on $X(\Gamma)$.

$$\mathbb{H} \xrightarrow{\pi} X(\Gamma)$$

Diagram illustrating the map π : The left side shows the upper half-plane \mathbb{H} with two marked points \dot{z}_P and $\dot{\bar{z}}_P$ on its boundary. The right side shows the quotient space $X(\Gamma)$, which is a genus-1 surface (a torus) with a point P marked on it. The map π is represented by an arrow pointing from the \mathbb{H} side to the $X(\Gamma)$ side.

Meromorphic differentials.

Definition: Let $U \subset \mathbb{C}$ be an open subset.

A meromorphic differential (of degree 1) on U is a symbol of the form

$$f(u) du$$

where $f: U \rightarrow \mathbb{P}^1$ is a meromorphic function and u is a variable on U .

- Change of the u, v - two variables on U variable

$$f(u) du = f(u(v)) \cdot \frac{d}{dv} u(v) \cdot dv$$

Notation: $\Omega^1(U) := \{f(u) du\}$

the space of differential forms on U .

Operations with meromorphic differentials:

- Addition $\underbrace{f_1(u) du}_{\text{meromorphic differential}} + \underbrace{f_2(u) du}_{\text{meromorphic differential}} = (f_1 + f_2)(u) du$
- Multiplication $f_1 \cdot (f_2(u) du) = (f_1 \cdot f_2)(u) du$
by a function \uparrow
meromorphic function

Meromorphic differentials of higher degree

Definition: Let $U \subset \mathbb{C}$ be an open subset.

A meromorphic differential of degree n is a symbol of the form

$$f(u)(du)^n$$

where $f: U \rightarrow \mathbb{P}^1$ is a meromorphic function and u is a variable on U .

- Change of the u, v - two variables on U

variable

$$f(u)(du)^n = f(u(v)) \cdot \left(\frac{d}{dv} u(v)\right)^n \cdot (dv)^n$$

$$\text{Notation: } \Omega^{\otimes n}(U) := \{ f(u)(du)^n \}$$

the space of differential forms of degree n on U .

Operations with meromorphic differentials

- Addition $f_1(u)(du)^n + f_2(u)(du)^n = (f_1 + f_2)(u)(du)^n$

- Multiplication by a function $f_1 \cdot (f_2(u)(du)^n) = (f_1 \cdot f_2)(u)(du)^n$

- Multiplication of differentials
$$\begin{aligned} & \left(f_1(u) (du)^n \right) \cdot \left(f_2(u) (du)^m \right) = \\ & = (f_1 \cdot f_2)(u) (du)^{n+m} \end{aligned}$$

Pullback

Let $U_1, U_2 \subset \mathbb{C}$ be open subsets, respectively, with local coordinates u_1, u_2 , respectively. Let $\varphi: U_1 \rightarrow U_2$ be a holomorphic map.

The pullback map

$$\varphi^*: \Omega^{\otimes n}(U_2) \rightarrow \Omega^{\otimes n}(U_1)$$

is defined by

$$\varphi^* (f(u_2) (du_2)^n) = f(\varphi(u_1)) \left(\frac{d\varphi}{du_1} \right)^n \cdot (du_1)^n.$$

Properties of the pullback map

- $$V_1 \xrightarrow{\varphi_1} V_2 \xrightarrow{\varphi_2} V_3 \quad \mathcal{U}^{\otimes n}(V_3) \xrightarrow{\varphi_2^*} \mathcal{U}^{\otimes n}(V_2) \xrightarrow{\varphi_1^*} \mathcal{U}^{\otimes n}(V_1)$$

$$(\varphi_2 \circ \varphi_1)^* = \varphi_1^* \circ \varphi_2^*$$

- $i : V_1 \rightarrow V_2$ is inclusion, then
 $i^* : \mathcal{U}^{\otimes n}(V_2) \rightarrow \mathcal{U}^{\otimes n}(V_1)$ is restriction
- $\varphi : V_1 \rightarrow V_2$ is a bijection (then also a bi-holomorphism)
 then $(\bar{\varphi}^*)^* = (\varphi^*)^{-1}$
- If $\pi : V_1 \rightarrow V_2$ is a surjection then π^* is injective.

Meromorphic differentials on a Riemann surface

Let X be a Riemann surface

Let $\varphi_j : U_j \rightarrow V_j$, $j \in J$ be an atlas of holomorphic charts on X .

A meromorphic differential of degree n on X is a collection of meromorphic differentials

$\omega_j \in \mathcal{L}^{\otimes n}(V_j)$, $j \in J$
compatible with pullbacks by transition maps:

$$\Psi_{i,j} = \varphi_i \circ \bar{\varphi}_j' : \varphi_j(U_i \cap U_j) \xrightarrow{\subseteq V_j} \varphi_i(U_i \cap U_j) \subseteq V_i$$
$$\Psi_{i,j}^*(\omega_i) = \omega_j$$

Exercise: Let $\Lambda \subset \mathbb{C}$ be a lattice
and let $T := \mathbb{C}/\Lambda$ be a complex
torus. Let z be the standard variable on \mathbb{C} .
Show that dz is a degree 1 differential on T .

Meromorphic modular forms

Definition: Let Γ be a congruence subgroup of $SL_2(\mathbb{Z}) =: \Gamma_1$.

A meromorphic function f on \mathbb{H} is a **meromorphic modular form of weight k** if

- $f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$ for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ and $z \in \mathbb{H}$.

- Around each cusp $\alpha = \frac{a_1\infty + b_1}{c_1\infty + d_1}$, $\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \in \Gamma_1$, f has the Laurent expansion:

$$(cz+d)^k f\left(\frac{a_1z+b_1}{c_1z+d_1}\right) = \sum_{n=n_0}^{\infty} c_{f,\alpha}(n) e^{\frac{2\pi i}{h_\alpha} \cdot n z}, \quad n_0 \in \mathbb{Z}$$

for some $h_\alpha \in \mathbb{Z}_{>0}$

Notation: The space of meromorphic modular forms of weight k and group Γ is denoted $A_k(\Gamma)$.

Meromorphic differentials on a modular curve

Let Γ be a congruence subgroup

Proposition: Let f be a meromorphic modular form of weight $k \in 2\mathbb{Z}_{>0}$ for congruence subgroup Γ . Then the meromorphic differential $f(z)(dz)^{k/2}$ is invariant under the action of Γ on \mathbb{H} .

Proof: $\omega := f(z)(dz)^{k/2}$ $\alpha: \mathbb{H} \rightarrow \mathbb{H}$, $z \mapsto \frac{az+b}{cz+d}$
 $\alpha^*(\omega) = f\left(\frac{az+b}{cz+d}\right) \left(\frac{dz}{cz+d}\right)^{k/2} (dz)^{k/2} = f\left(\frac{az+b}{cz+d}\right) (cz+d)^k (cz+d)^{-2 \cdot \frac{k}{2}} \cdot (dz)^{k/2} = \omega$

Meromorphic differentials on a modular curve

$$\mathcal{H} \xrightarrow{\pi} X(\Gamma)$$

$$\mathcal{R}^{\otimes k_2}(\mathcal{H}) \leftarrow \mathcal{R}^{\otimes k_2}(X(\Gamma))$$

$$f(z)(dz)^{k_2} \xleftarrow{\pi^*} \omega$$

Proposition: For $f \in \mathcal{A}_k(\Gamma)$ there exists a unique meromorphic differential $\omega \in \mathcal{R}^{\otimes k/2}(X(\Gamma))$ such that $\pi^*(\omega) = f(z)(dz)^{k/2}$.

Theorem: The map from $\mathcal{A}_k(\Gamma)$ to $\mathcal{R}^{\otimes k/2}(X(\Gamma))$ given by $f \mapsto \omega$ is an isomorphism of vector spaces.

Proof of the proposition: Let $f \in \mathcal{A}_k(\Gamma)$

We have to define ω in local coordinates

Let $P \in X(\Gamma)$. Consider the following cases:

- P is a regular point.

$\pi^1: \mathcal{U}_P \rightarrow \mathbb{H}$ is a local coordinate

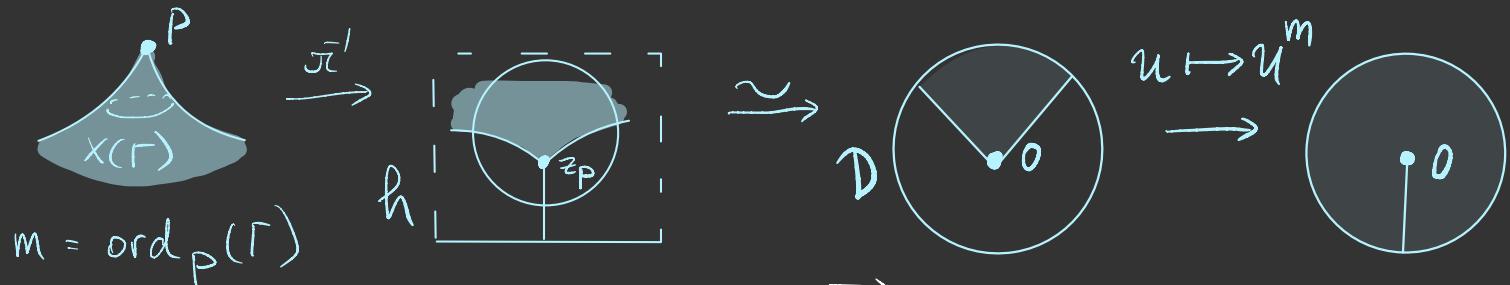
$$\omega = (\pi^1)^* (f(z)(dz)^{k/2})$$

- P is an elliptic point

- P is a cusp

- P is an elliptic point

Recall:
 $\mathbb{D} = \{z \mid |z| < 1\}$



Let A be a generator of $\text{Stab}_{z_P}(\bar{\Gamma})$. There exists a biholomorphic map $u: h \rightarrow D$ such that $u(Az) = e^{2\pi i/m} \cdot u(z)$

The variable $q := u^m$ is a local coordinate around P on $X(\Gamma)$.

We have $f(z) (dz)^{k/2} = f(z(u)) \left(\frac{dz}{du} \right)^{k/2} (du)^{k/2} =: \tilde{f}(u) (du)^{k/2}$

Since u is a biholomorphic map we have

$\text{ord}_{z=z_P} f(z) = \text{ord}_{u=0} \tilde{f}(u)$. Moreover, $\tilde{f}: D \rightarrow \mathbb{P}^1$ is meromorphic

As $f(z)(dz)^{k/2}$ is invariant under the pullback by A ,
 then $\tilde{f}(u)(du)^{k/2}$ is invariant under $u \mapsto e^{2\pi i/m} \cdot u$

Thus $\tilde{f}(e^{2\pi i/m} \cdot u) (d(e^{2\pi i/m} u))^{k/2} = \tilde{f}(u)(du)^{k/2}$

and ~~(*)~~ $\tilde{f}(e^{2\pi i/m} \cdot u) = e^{-\frac{\pi i k}{m}} \cdot \tilde{f}(u)$

The function $\tilde{f}(u)$ has a Laurent expansion around $u=0$

$$(\star) \quad \tilde{f}(u) = \sum_{n=n_0}^{\infty} c_{\tilde{f}}(n) u^n, \quad n_0 \in \mathbb{Z}$$

Equation ~~(*)~~ implies that (\star) is of the form

$$\tilde{f}(u) = \sum_{\substack{n \equiv -k/2 \pmod{m} \\ n \geq n_0}} c_{\tilde{f}}(n) u^n$$

Now we express the form $\tilde{f}(u)(du)^{k/2}$ in the local coordinate $q = u^m$.

The expansion $\tilde{f}(u) = \sum_{\substack{n \equiv -k/2 \pmod{m} \\ n \geq n_0}} c_{\tilde{f}}(n) u^n$

implies $\tilde{f}(u) = u^{-k/2} \cdot \tilde{\tilde{f}}(q)$, where $\tilde{\tilde{f}}$ is meromorphic.

By the chain rule we have $dq = m u^{m-1} du$.

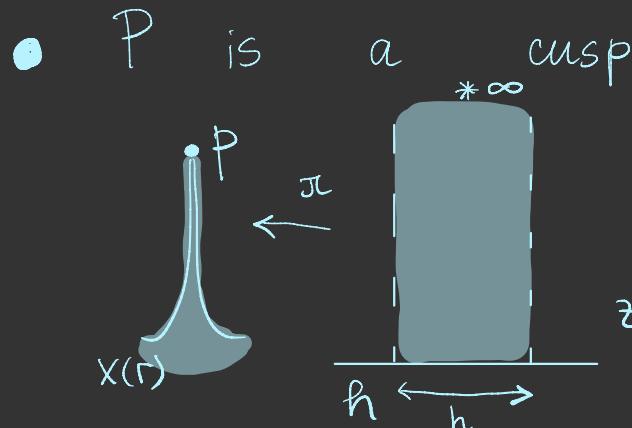
Therefore $du = \frac{1}{m} u \bar{q}^1 dq$

$$\bullet + \bullet \Rightarrow (\bar{\pi}^1)^* \left(\tilde{f}(u) (du)^{k/2} \right) = u^{-k/2} \tilde{\tilde{f}}(q) \frac{1}{m^{k/2}} u^{k/2} \bar{q}^{-k/2} (dq)^{k/2}$$

$$\bar{\pi}^1 : \mathcal{U}_P \rightarrow \mathcal{H}$$

$$\times_{(\Gamma)}$$

$$= \frac{1}{m^{k/2}} \tilde{\tilde{f}}(q) \bar{q}^{-k/2} (dq)^k$$



$$q = e^{\frac{2\pi i z}{h}}$$

local coordinate

$$z \mapsto e^{\frac{2\pi i z}{h}}$$

$$dq = \frac{2\pi i}{h} e^{\frac{2\pi i}{h} z} dz \quad dz = \frac{h}{2\pi i} q^{-1} dq$$

$$(\pi^*)^{-1} \left(f(z) (dz)^{k/2} \right) = \left(f(z(q)) \left(\frac{h}{2\pi i} q^{-1} \right)^{k/2} (dq)^{k/2} \right)$$

meromorphic function in a local chart

More details in „The first course on modular forms“ Section 3.3

Divisors on Riemann surfaces

Definition: Let X be a Riemann surface.

A **divisor** on X is a finite formal sum of integer multiples of points on X

$$D = \sum_{x \in X} n_x \cdot x \quad n_x \in \mathbb{Z} \text{ for all } x, \\ n_x = 0 \text{ for almost all } x.$$

The set $\text{Div}(X)$ is the free Abelian group on the points of X .

$$\sum_{x \in X} m_x \cdot x + \sum_{x \in X} n_x \cdot x = \sum_{x \in X} (m_x + n_x) x$$

The **degree** of a divisor D is $\deg(D) = \sum n_x$

Divisor of a meromorphic function

Let f be a non-zero meromorphic function on X

For a point $x \in X$

$$\text{ord}_f(x) := \begin{cases} \text{mult}_f(x) & \text{if } f(x) = 0 \\ -\text{mult}_f(x) & \text{if } f(x) = \infty \\ 0 & \text{otherwise} \end{cases}$$

Definition: The divisor of f is defined as

$$\text{div}(f) := \sum_{x \in X} \text{ord}_f(x) \cdot x$$

Lemma: The map $\text{div}: \mathcal{C}(X)^* \rightarrow \text{Div}(X)$ is a homomorphism:
 $\text{div}(f_1 \cdot f_2) = \text{div}(f_1) + \text{div}(f_2)$.

Lemma: For every $f \in \mathcal{C}(X)^*$ the divisor $\text{div}(f)$ has degree 0.

Proof: exercise. **Terminology:** $\text{div}(f)$ is a **principal divisor**.

Divisor of a meromorphic differential

Let ω be a meromorphic differential of degree k on a Riemann surface X .

Let $x \in X$ be a point and let z be a local coordinate around x s.t. $z(x) = 0$.

Then ω has the form

$\omega = f(z) (dz)^k$, where f is a meromorphic function

f has the Laurent expansion around $z=0$

$$f(z) = \sum_{n \geq n_0} a_n \cdot z^n, \quad n_0 \in \mathbb{Z}$$

Definition: $\text{ord}_x \omega = n_0$

Lemma: The number n_0 does not depend on a choice of local coordinate

Divisor of a meromorphic differential

Definition: Let ω be a meromorphic differential

$$\text{div}(\omega) := \sum_{x \in X} \text{ord}_x(\omega) \cdot x$$

Definition: A canonical divisor on X is a divisor of the form $\text{div}(\lambda)$ where λ is a nonzero element of $\Omega^1(X)$

Exercise. Let $\lambda, \mu \in \text{Div}(X)$. Suppose that λ is a canonical divisor and μ is a principal divisor. Then $\lambda + \mu$ is also a canonical divisor

Notation: Let $D = \sum_x n_x \cdot x$ be a divisor on X
 we write $D \geq 0$ if $n_x \geq 0$ for all $x \in X$.

Let D be any divisor on X . Consider the following vector space:

$$L(D) = \{f \in \mathbb{C}(X) \mid f \equiv 0 \text{ or } \text{div}(f) + D \geq 0\}$$

$$\ell(D) := \dim L(D)$$

Theorem (Riemann-Roch) Let X be a compact Riemann surface of genus g . Let $\text{div}(\gamma)$ be a canonical divisor on X . Then for any divisor $D \in \text{Div}(X)$

$$\ell(D) = \deg(D) - g + 1 + \ell(\text{div}(\gamma) - D)$$

Corollary: Let X be a compact Riemann surface of genus g .

Let $\text{div}(\lambda)$ be a canonical divisor on X .

Let D be any divisor on X

(a) $\ell(\text{div}(\lambda)) = g$

(b) $\deg(\text{div}(\lambda)) = 2g-2$

(c) If $\deg(D) < 0$ then $\ell(D) = 0$

(d) If $\deg(D) > 2g-2$ then $\ell(D) = \deg(D) - g + 1$

Proof: (c) Suppose that $f \in L(D)$

Then $\text{div}(f) + D \geq 0 \Rightarrow \deg(\text{div}(f) + D) \geq 0$

On the other hand: $\deg(\text{div}(f)) = 0, \deg(D) < 0$

Hence $\deg(\text{div}(f) + D) < 0 \leftarrow$

Definition: A differential ω of degree n on a Riemann surface X is **holomorphic** if at each point $z \in X$ there exists a local coordinate z such that $\omega = f(z)(dz)^n$ where f is holomorphic.

Definition: A modular form $f \in M_k(\Gamma)$ is a **cusp form** if for each cusp $\alpha = \frac{a\infty + b}{c\infty + d}$, $(\frac{a}{c}, \frac{b}{d}) \in \Gamma_1$, f has the expansion $(cz + d)^k f\left(\frac{az + b}{cz + d}\right) = \sum_{n=1}^{\infty} c_{f, \alpha}(n) e^{\frac{2\pi i z}{n}}$

$S_k(\Gamma)$ is the space of **cusp forms** of weight k and group Γ .

Lemma: $\mathcal{Q}_{\text{hoe}}^1(X(\Gamma)) \cong S_2(\Gamma)$

Exercise: Show that $\dim S_2(X(\Gamma)) = g(X(\Gamma))$

Proof of the Lemma:

Suppose that $\omega \in \mathcal{S}_{\text{hole}}^1(X(\Gamma))$.

By the theorem on p. 17

$$\pi^*(\omega) = f(z) dz \quad \text{for some } f \in \mathcal{A}_2(\Gamma).$$

Let $x \in X(\Gamma)$ be a regular point

$$x = \pi(z_x), \quad z_x \in h, \quad \text{Stab}(z_x, \mathbb{F}) = \{\overline{\text{id}}\}.$$

$$\text{ord}_x(\omega) = \text{ord}_{z=z_x}(f(z)dz).$$

f is holomorphic at z_x if and only if ω is holomorphic at x .

$$h \xrightarrow{\pi} X(\Gamma)$$

Let $y \in X(\mathbb{F})$ be an elliptic point of order m .
 $y = \pi(z_y)$, $z_y \in \mathbb{H}$, $|\text{Stab}(z_y, \mathbb{F})| = m$.

$$y = \pi(z_y), \quad z_y \in \mathbb{H} \quad q = (z - z_y)^m \quad dq = m(z - z_y)^{m-1} dz$$

$$\begin{aligned} \omega &= (\pi^*)^{-1}(f(z) dz) = f(z(q)) \bar{m}^1 (z - z_y)^{1-m} dq \\ &= \bar{m}^1 f(z(q)) q^{\frac{1}{m}-1} dq \end{aligned}$$

Laurent expansions near z_y and y :

$$f(z) dz = \sum_{n \equiv -1 \pmod{m}} c^n (z - z_y)^n dz$$

$$\omega(q) = \bar{m}^1 \sum_{n \equiv -1 \pmod{m}} c^n q^{\frac{n+1}{m}-1} dq.$$

If

$$\text{ord}_{z=z_y}(f(z)dz) = n_0, \quad , \quad n_0 \equiv -1 \pmod{m},$$

then

$$\text{ord}_y(\omega) = \frac{n_0 + 1 - m}{m}. \quad \text{Thus}$$

$$\boxed{\text{ord}_y(\omega) = \frac{1-m}{m} + \frac{1}{m} \cdot \text{ord}_{z_y}(f(z)dz).}$$

We observe, that $\frac{n_0}{m} - \frac{m-1}{m} \geq 0$ if and only if $n_0 \geq 0$.

Thus ω is holomorphic at point y if and only if $f(z)$ is holomorphic at $z = z_y$.

Let $\infty \in X(\Gamma)$ be cusp of width h .

$$\text{Stab}(\infty, \Gamma) = \left\{ \begin{pmatrix} 1 & h \cdot n \\ 0 & 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\}.$$

$$q = e^{\frac{2\pi i}{h} \cdot z} \quad dq = \frac{2\pi i}{h} \cdot q \cdot dz$$

$$\omega = \pi^*(f(z) dz) = \frac{h}{2\pi i} f(z(q)) \bar{q}^1 dq$$

Laurent expansion at ∞ :

$$f(z) dz = \sum_{n=n_0}^{\infty} c_n e^{\frac{2\pi i}{h} \cdot n z} dz, \Rightarrow \boxed{\text{ord}_{\infty}(\omega) = n_0 - 1}.$$

$$\omega = \sum_{n=n_0}^{\infty} c_n q^{n-1} dq$$

Modular form f vanishes at ∞ if and only if ω is holomorphic at ∞ .

$$\left. \begin{array}{c} \text{red} \\ \text{blue} \\ \text{green} \end{array} \right\} \Rightarrow \boxed{\text{black}}$$